/** * @file lv_math.c * */ /********************* * INCLUDES *********************/ #include "lv_math.h" /********************* * DEFINES *********************/ /********************** * TYPEDEFS **********************/ #define NEWTON_ITERATIONS 8 #define CUBIC_PRECISION_BITS 20 /* 10 or 20 bits recommended, int64_t calculation is used for 20bit precision */ #if CUBIC_PRECISION_BITS < 10 || CUBIC_PRECISION_BITS > 20 #error "cubic precision bits should be in range of [10, 20] for 32bit/64bit calculations." #endif /********************** * STATIC PROTOTYPES **********************/ /********************** * STATIC VARIABLES **********************/ static const uint16_t sin0_90_table[] = { 0, 572, 1144, 1715, 2286, 2856, 3425, 3993, 4560, 5126, 5690, 6252, 6813, 7371, 7927, 8481, 9032, 9580, 10126, 10668, 11207, 11743, 12275, 12803, 13328, 13848, 14365, 14876, 15384, 15886, 16384, 16877, 17364, 17847, 18324, 18795, 19261, 19720, 20174, 20622, 21063, 21498, 21926, 22348, 22763, 23170, 23571, 23965, 24351, 24730, 25102, 25466, 25822, 26170, 26510, 26842, 27166, 27482, 27789, 28088, 28378, 28660, 28932, 29197, 29452, 29698, 29935, 30163, 30382, 30592, 30792, 30983, 31164, 31336, 31499, 31651, 31795, 31928, 32052, 32166, 32270, 32365, 32449, 32524, 32588, 32643, 32688, 32723, 32748, 32763, 32768 }; /********************** * MACROS **********************/ /********************** * GLOBAL FUNCTIONS **********************/ /** * Return with sinus of an angle * @param angle * @return sinus of 'angle'. sin(-90) = -32767, sin(90) = 32767 */ LV_ATTRIBUTE_FAST_MEM int32_t lv_trigo_sin(int16_t angle) { int32_t ret = 0; angle = angle % 360; if(angle < 0) angle = 360 + angle; if(angle < 90) { ret = sin0_90_table[angle]; } else if(angle >= 90 && angle < 180) { angle = 180 - angle; ret = sin0_90_table[angle]; } else if(angle >= 180 && angle < 270) { angle = angle - 180; ret = -sin0_90_table[angle]; } else { /*angle >=270*/ angle = 360 - angle; ret = -sin0_90_table[angle]; } return ret; } /** * Calculate a value of a Cubic Bezier function. * @param t time in range of [0..LV_BEZIER_VAL_MAX] * @param u0 start values in range of [0..LV_BEZIER_VAL_MAX] * @param u1 control value 1 values in range of [0..LV_BEZIER_VAL_MAX] * @param u2 control value 2 in range of [0..LV_BEZIER_VAL_MAX] * @param u3 end values in range of [0..LV_BEZIER_VAL_MAX] * @return the value calculated from the given parameters in range of [0..LV_BEZIER_VAL_MAX] */ uint32_t lv_bezier3(uint32_t t, uint32_t u0, uint32_t u1, uint32_t u2, uint32_t u3) { uint32_t t_rem = 1024 - t; uint32_t t_rem2 = (t_rem * t_rem) >> 10; uint32_t t_rem3 = (t_rem2 * t_rem) >> 10; uint32_t t2 = (t * t) >> 10; uint32_t t3 = (t2 * t) >> 10; uint32_t v1 = (t_rem3 * u0) >> 10; uint32_t v2 = (3 * t_rem2 * t * u1) >> 20; uint32_t v3 = (3 * t_rem * t2 * u2) >> 20; uint32_t v4 = (t3 * u3) >> 10; return v1 + v2 + v3 + v4; } static float do_cubic_bezier_f(float t, float a, float b, float c) { /*a*t^3 + b*t^2 + c*t*/ return ((a * t + b) * t + c) * t; } /** * cubic-bezier Reference: * * https://github.com/gre/bezier-easing * https://opensource.apple.com/source/WebCore/WebCore-955.66/platform/graphics/UnitBezier.h * * Copyright (c) 2014 Gaƫtan Renaudeau * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ /** * Calculate the y value of cubic-bezier(x1, y1, x2, y2) function as specified x. * @param x time in range of [0..1] * @param x1 x of control point 1 in range of [0..1] * @param y1 y of control point 1 in range of [0..1] * @param x2 x of control point 2 in range of [0..1] * @param y2 y of control point 2 in range of [0..1] * @return the value calculated */ float lv_cubic_bezier_f(float x, float x1, float y1, float x2, float y2) { float ax, bx, cx, ay, by, cy; float tl, tr, t; /*t in cubic-bezier function, used for bisection */ float xs; /*x sampled on curve */ float d; /*slope value at specified t*/ if(x == 0 || x == 1) return x; cx = 3.f * x1; bx = 3.f * (x2 - x1) - cx; ax = 1.f - cx - bx; cy = 3.f * y1; by = 3.f * (y2 - y1) - cy; ay = 1.f - cy - by; /*Try Newton's method firstly */ t = x; /*Make a guess*/ for(int i = 0; i < NEWTON_ITERATIONS; i++) { xs = do_cubic_bezier_f(t, ax, bx, cx); xs -= x; if(LV_ABS(xs) < 1e-6f) goto found; d = (3.f * ax * t + 2.f * bx) * t + cx; if(LV_ABS(d) < 1e-6f) break; t -= xs / d; } /*Fallback to bisection method for reliability*/ tl = 0.f, tr = 1.f, t = x; if(t < tl) { t = tl; goto found; } if(t > tr) { t = tr; goto found; } while(tl < tr) { xs = do_cubic_bezier_f(t, ax, bx, cx); if(LV_ABS(xs - x) < 1e-6f) goto found; x > xs ? (tl = t) : (tr = t); t = (tr - tl) * .5f + tl; } found: return do_cubic_bezier_f(t, ay, by, cy); } static int32_t do_cubic_bezier(int32_t t, int32_t a, int32_t b, int32_t c) { /*a * t^3 + b * t^2 + c * t*/ #if CUBIC_PRECISION_BITS > 10 int64_t ret; #else int32_t ret; #endif ret = a; ret = (ret * t) >> CUBIC_PRECISION_BITS; ret = ((ret + b) * t) >> CUBIC_PRECISION_BITS; ret = ((ret + c) * t) >> CUBIC_PRECISION_BITS; return ret; } /** * Calculate the y value of cubic-bezier(x1, y1, x2, y2) function as specified x. * @param x time in range of [0..1024] * @param x1 x of control point 1 in range of [0..1024] * @param y1 y of control point 1 in range of [0..1024] * @param x2 x of control point 2 in range of [0..1024] * @param y2 y of control point 2 in range of [0..1024] * @return the value calculated */ int32_t lv_cubic_bezier(int32_t x, int32_t x1, int32_t y1, int32_t x2, int32_t y2) { int32_t ax, bx, cx, ay, by, cy; int32_t tl, tr, t; /*t in cubic-bezier function, used for bisection */ int32_t xs; /*x sampled on curve */ #if CUBIC_PRECISION_BITS > 10 int64_t d; /*slope value at specified t*/ #else int32_t d; #endif if(x == 0 || x == 1024) return x; /* input is always 10bit precision */ #if CUBIC_PRECISION_BITS != 10 x <<= CUBIC_PRECISION_BITS - 10; x1 <<= CUBIC_PRECISION_BITS - 10; x2 <<= CUBIC_PRECISION_BITS - 10; y1 <<= CUBIC_PRECISION_BITS - 10; y2 <<= CUBIC_PRECISION_BITS - 10; #endif cx = 3 * x1; bx = 3 * (x2 - x1) - cx; ax = (1L << CUBIC_PRECISION_BITS) - cx - bx; cy = 3 * y1; by = 3 * (y2 - y1) - cy; ay = (1L << CUBIC_PRECISION_BITS) - cy - by; /*Try Newton's method firstly */ t = x; /*Make a guess*/ for(int i = 0; i < NEWTON_ITERATIONS; i++) { /*Check if x on curve at t matches input x*/ xs = do_cubic_bezier(t, ax, bx, cx) - x; if(LV_ABS(xs) <= 1) goto found; /* get slop at t, d = 3 * ax * t^2 + 2 * bx + t + cx */ d = ax; /* use 64bit operation if needed. */ d = (3 * d * t) >> CUBIC_PRECISION_BITS; d = ((d + 2 * bx) * t) >> CUBIC_PRECISION_BITS; d += cx; if(LV_ABS(d) <= 1) break; d = ((int64_t)xs * (1L << CUBIC_PRECISION_BITS)) / d; if(d == 0) break; /*Reached precision limits*/ t -= d; } /*Fallback to bisection method for reliability*/ tl = 0, tr = 1L << CUBIC_PRECISION_BITS, t = x; if(t < tl) { t = tl; goto found; } if(t > tr) { t = tr; goto found; } while(tl < tr) { xs = do_cubic_bezier(t, ax, bx, cx); if(LV_ABS(xs - x) <= 1) goto found; x > xs ? (tl = t) : (tr = t); t = (tr - tl) / 2 + tl; if(t == tl) break; } /*Failed to find suitable t for given x, return a value anyway.*/ found: /*Return y at t*/ #if CUBIC_PRECISION_BITS != 10 return do_cubic_bezier(t, ay, by, cy) >> (CUBIC_PRECISION_BITS - 10); #else return do_cubic_bezier(t, ay, by, cy); #endif } /** * Get the square root of a number * @param x integer which square root should be calculated * @param q store the result here. q->i: integer part, q->f: fractional part in 1/256 unit * @param mask optional to skip some iterations if the magnitude of the root is known. * Set to 0x8000 by default. * If root < 16: mask = 0x80 * If root < 256: mask = 0x800 * Else: mask = 0x8000 */ LV_ATTRIBUTE_FAST_MEM void lv_sqrt(uint32_t x, lv_sqrt_res_t * q, uint32_t mask) { x = x << 8; /*To get 4 bit precision. (sqrt(256) = 16 = 4 bit)*/ uint32_t root = 0; uint32_t trial; // http://ww1.microchip.com/...en/AppNotes/91040a.pdf do { trial = root + mask; if(trial * trial <= x) root = trial; mask = mask >> 1; } while(mask); q->i = root >> 4; q->f = (root & 0xf) << 4; } /** * Calculate the atan2 of a vector. * @param x * @param y * @return the angle in degree calculated from the given parameters in range of [0..360] */ uint16_t lv_atan2(int x, int y) { // Fast XY vector to integer degree algorithm - Jan 2011 www.RomanBlack.com // Converts any XY values including 0 to a degree value that should be // within +/- 1 degree of the accurate value without needing // large slow trig functions like ArcTan() or ArcCos(). // NOTE! at least one of the X or Y values must be non-zero! // This is the full version, for all 4 quadrants and will generate // the angle in integer degrees from 0-360. // Any values of X and Y are usable including negative values provided // they are between -1456 and 1456 so the 16bit multiply does not overflow. unsigned char negflag; unsigned char tempdegree; unsigned char comp; unsigned int degree; // this will hold the result unsigned int ux; unsigned int uy; // Save the sign flags then remove signs and get XY as unsigned ints negflag = 0; if(x < 0) { negflag += 0x01; // x flag bit x = (0 - x); // is now + } ux = x; // copy to unsigned var before multiply if(y < 0) { negflag += 0x02; // y flag bit y = (0 - y); // is now + } uy = y; // copy to unsigned var before multiply // 1. Calc the scaled "degrees" if(ux > uy) { degree = (uy * 45) / ux; // degree result will be 0-45 range negflag += 0x10; // octant flag bit } else { degree = (ux * 45) / uy; // degree result will be 0-45 range } // 2. Compensate for the 4 degree error curve comp = 0; tempdegree = degree; // use an unsigned char for speed! if(tempdegree > 22) { // if top half of range if(tempdegree <= 44) comp++; if(tempdegree <= 41) comp++; if(tempdegree <= 37) comp++; if(tempdegree <= 32) comp++; // max is 4 degrees compensated } else { // else is lower half of range if(tempdegree >= 2) comp++; if(tempdegree >= 6) comp++; if(tempdegree >= 10) comp++; if(tempdegree >= 15) comp++; // max is 4 degrees compensated } degree += comp; // degree is now accurate to +/- 1 degree! // Invert degree if it was X>Y octant, makes 0-45 into 90-45 if(negflag & 0x10) degree = (90 - degree); // 3. Degree is now 0-90 range for this quadrant, // need to invert it for whichever quadrant it was in if(negflag & 0x02) { // if -Y if(negflag & 0x01) // if -Y -X degree = (180 + degree); else // else is -Y +X degree = (180 - degree); } else { // else is +Y if(negflag & 0x01) // if +Y -X degree = (360 - degree); } return degree; } /** * Calculate the integer exponents. * @param base * @param power * @return base raised to the power exponent */ int64_t lv_pow(int64_t base, int8_t exp) { int64_t result = 1; while(exp) { if(exp & 1) result *= base; exp >>= 1; base *= base; } return result; } /** * Get the mapped of a number given an input and output range * @param x integer which mapped value should be calculated * @param min_in min input range * @param max_in max input range * @param min_out max output range * @param max_out max output range * @return the mapped number */ int32_t lv_map(int32_t x, int32_t min_in, int32_t max_in, int32_t min_out, int32_t max_out) { if(max_in >= min_in && x >= max_in) return max_out; if(max_in >= min_in && x <= min_in) return min_out; if(max_in <= min_in && x <= max_in) return max_out; if(max_in <= min_in && x >= min_in) return min_out; /** * The equation should be: * ((x - min_in) * delta_out) / delta in) + min_out * To avoid rounding error reorder the operations: * (x - min_in) * (delta_out / delta_min) + min_out */ int32_t delta_in = max_in - min_in; int32_t delta_out = max_out - min_out; return ((x - min_in) * delta_out) / delta_in + min_out; } uint32_t lv_rand(uint32_t min, uint32_t max) { static uint32_t a = 0x1234ABCD; /*Seed*/ /*Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs"*/ uint32_t x = a; x ^= x << 13; x ^= x >> 17; x ^= x << 5; a = x; return (a % (max - min + 1)) + min; } /********************** * STATIC FUNCTIONS **********************/