彻底改版2.0
This commit is contained in:
404
third/3rd_qwt/qwt_raster_data.cpp
Normal file
404
third/3rd_qwt/qwt_raster_data.cpp
Normal file
@@ -0,0 +1,404 @@
|
||||
/* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
|
||||
* Qwt Widget Library
|
||||
* Copyright (C) 1997 Josef Wilgen
|
||||
* Copyright (C) 2002 Uwe Rathmann
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the Qwt License, Version 1.0
|
||||
*****************************************************************************/
|
||||
|
||||
#include "qwt_raster_data.h"
|
||||
#include "qwt_point_3d.h"
|
||||
#include <qnumeric.h>
|
||||
|
||||
class QwtRasterData::ContourPlane
|
||||
{
|
||||
public:
|
||||
inline ContourPlane( double z ):
|
||||
d_z( z )
|
||||
{
|
||||
}
|
||||
|
||||
inline bool intersect( const QwtPoint3D vertex[3],
|
||||
QPointF line[2], bool ignoreOnPlane ) const;
|
||||
|
||||
inline double z() const { return d_z; }
|
||||
|
||||
private:
|
||||
inline int compare( double z ) const;
|
||||
inline QPointF intersection(
|
||||
const QwtPoint3D& p1, const QwtPoint3D &p2 ) const;
|
||||
|
||||
double d_z;
|
||||
};
|
||||
|
||||
inline bool QwtRasterData::ContourPlane::intersect(
|
||||
const QwtPoint3D vertex[3], QPointF line[2],
|
||||
bool ignoreOnPlane ) const
|
||||
{
|
||||
bool found = true;
|
||||
|
||||
// Are the vertices below (-1), on (0) or above (1) the plan ?
|
||||
const int eq1 = compare( vertex[0].z() );
|
||||
const int eq2 = compare( vertex[1].z() );
|
||||
const int eq3 = compare( vertex[2].z() );
|
||||
|
||||
/*
|
||||
(a) All the vertices lie below the contour level.
|
||||
(b) Two vertices lie below and one on the contour level.
|
||||
(c) Two vertices lie below and one above the contour level.
|
||||
(d) One vertex lies below and two on the contour level.
|
||||
(e) One vertex lies below, one on and one above the contour level.
|
||||
(f) One vertex lies below and two above the contour level.
|
||||
(g) Three vertices lie on the contour level.
|
||||
(h) Two vertices lie on and one above the contour level.
|
||||
(i) One vertex lies on and two above the contour level.
|
||||
(j) All the vertices lie above the contour level.
|
||||
*/
|
||||
|
||||
static const int tab[3][3][3] =
|
||||
{
|
||||
// jump table to avoid nested case statements
|
||||
{ { 0, 0, 8 }, { 0, 2, 5 }, { 7, 6, 9 } },
|
||||
{ { 0, 3, 4 }, { 1, 10, 1 }, { 4, 3, 0 } },
|
||||
{ { 9, 6, 7 }, { 5, 2, 0 }, { 8, 0, 0 } }
|
||||
};
|
||||
|
||||
const int edgeType = tab[eq1+1][eq2+1][eq3+1];
|
||||
switch ( edgeType )
|
||||
{
|
||||
case 1:
|
||||
// d(0,0,-1), h(0,0,1)
|
||||
line[0] = vertex[0].toPoint();
|
||||
line[1] = vertex[1].toPoint();
|
||||
break;
|
||||
case 2:
|
||||
// d(-1,0,0), h(1,0,0)
|
||||
line[0] = vertex[1].toPoint();
|
||||
line[1] = vertex[2].toPoint();
|
||||
break;
|
||||
case 3:
|
||||
// d(0,-1,0), h(0,1,0)
|
||||
line[0] = vertex[2].toPoint();
|
||||
line[1] = vertex[0].toPoint();
|
||||
break;
|
||||
case 4:
|
||||
// e(0,-1,1), e(0,1,-1)
|
||||
line[0] = vertex[0].toPoint();
|
||||
line[1] = intersection( vertex[1], vertex[2] );
|
||||
break;
|
||||
case 5:
|
||||
// e(-1,0,1), e(1,0,-1)
|
||||
line[0] = vertex[1].toPoint();
|
||||
line[1] = intersection( vertex[2], vertex[0] );
|
||||
break;
|
||||
case 6:
|
||||
// e(-1,1,0), e(1,0,-1)
|
||||
line[0] = vertex[2].toPoint();
|
||||
line[1] = intersection( vertex[0], vertex[1] );
|
||||
break;
|
||||
case 7:
|
||||
// c(-1,1,-1), f(1,1,-1)
|
||||
line[0] = intersection( vertex[0], vertex[1] );
|
||||
line[1] = intersection( vertex[1], vertex[2] );
|
||||
break;
|
||||
case 8:
|
||||
// c(-1,-1,1), f(1,1,-1)
|
||||
line[0] = intersection( vertex[1], vertex[2] );
|
||||
line[1] = intersection( vertex[2], vertex[0] );
|
||||
break;
|
||||
case 9:
|
||||
// f(-1,1,1), c(1,-1,-1)
|
||||
line[0] = intersection( vertex[2], vertex[0] );
|
||||
line[1] = intersection( vertex[0], vertex[1] );
|
||||
break;
|
||||
case 10:
|
||||
// g(0,0,0)
|
||||
// The CONREC algorithm has no satisfying solution for
|
||||
// what to do, when all vertices are on the plane.
|
||||
|
||||
if ( ignoreOnPlane )
|
||||
found = false;
|
||||
else
|
||||
{
|
||||
line[0] = vertex[2].toPoint();
|
||||
line[1] = vertex[0].toPoint();
|
||||
}
|
||||
break;
|
||||
default:
|
||||
found = false;
|
||||
}
|
||||
|
||||
return found;
|
||||
}
|
||||
|
||||
inline int QwtRasterData::ContourPlane::compare( double z ) const
|
||||
{
|
||||
if ( z > d_z )
|
||||
return 1;
|
||||
|
||||
if ( z < d_z )
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
inline QPointF QwtRasterData::ContourPlane::intersection(
|
||||
const QwtPoint3D& p1, const QwtPoint3D &p2 ) const
|
||||
{
|
||||
const double h1 = p1.z() - d_z;
|
||||
const double h2 = p2.z() - d_z;
|
||||
|
||||
const double x = ( h2 * p1.x() - h1 * p2.x() ) / ( h2 - h1 );
|
||||
const double y = ( h2 * p1.y() - h1 * p2.y() ) / ( h2 - h1 );
|
||||
|
||||
return QPointF( x, y );
|
||||
}
|
||||
|
||||
//! Constructor
|
||||
QwtRasterData::QwtRasterData()
|
||||
{
|
||||
}
|
||||
|
||||
//! Destructor
|
||||
QwtRasterData::~QwtRasterData()
|
||||
{
|
||||
}
|
||||
|
||||
/*!
|
||||
Set the bounding interval for the x, y or z coordinates.
|
||||
|
||||
\param axis Axis
|
||||
\param interval Bounding interval
|
||||
|
||||
\sa interval()
|
||||
*/
|
||||
void QwtRasterData::setInterval( Qt::Axis axis, const QwtInterval &interval )
|
||||
{
|
||||
d_intervals[axis] = interval;
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief Initialize a raster
|
||||
|
||||
Before the composition of an image QwtPlotSpectrogram calls initRaster(),
|
||||
announcing the area and its resolution that will be requested.
|
||||
|
||||
The default implementation does nothing, but for data sets that
|
||||
are stored in files, it might be good idea to reimplement initRaster(),
|
||||
where the data is resampled and loaded into memory.
|
||||
|
||||
\param area Area of the raster
|
||||
\param raster Number of horizontal and vertical pixels
|
||||
|
||||
\sa initRaster(), value()
|
||||
*/
|
||||
void QwtRasterData::initRaster( const QRectF &area, const QSize &raster )
|
||||
{
|
||||
Q_UNUSED( area );
|
||||
Q_UNUSED( raster );
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief Discard a raster
|
||||
|
||||
After the composition of an image QwtPlotSpectrogram calls discardRaster().
|
||||
|
||||
The default implementation does nothing, but if data has been loaded
|
||||
in initRaster(), it could deleted now.
|
||||
|
||||
\sa initRaster(), value()
|
||||
*/
|
||||
void QwtRasterData::discardRaster()
|
||||
{
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief Pixel hint
|
||||
|
||||
pixelHint() returns the geometry of a pixel, that can be used
|
||||
to calculate the resolution and alignment of the plot item, that is
|
||||
representing the data.
|
||||
|
||||
Width and height of the hint need to be the horizontal
|
||||
and vertical distances between 2 neighbored points.
|
||||
The center of the hint has to be the position of any point
|
||||
( it doesn't matter which one ).
|
||||
|
||||
An empty hint indicates, that there are values for any detail level.
|
||||
|
||||
Limiting the resolution of the image might significantly improve
|
||||
the performance and heavily reduce the amount of memory when rendering
|
||||
a QImage from the raster data.
|
||||
|
||||
The default implementation returns an empty rectangle recommending
|
||||
to render in target device ( f.e. screen ) resolution.
|
||||
|
||||
\param area In most implementations the resolution of the data doesn't
|
||||
depend on the requested area.
|
||||
|
||||
\return Bounding rectangle of a pixel
|
||||
*/
|
||||
QRectF QwtRasterData::pixelHint( const QRectF &area ) const
|
||||
{
|
||||
Q_UNUSED( area );
|
||||
return QRectF();
|
||||
}
|
||||
|
||||
/*!
|
||||
Calculate contour lines
|
||||
|
||||
\param rect Bounding rectangle for the contour lines
|
||||
\param raster Number of data pixels of the raster data
|
||||
\param levels List of limits, where to insert contour lines
|
||||
\param flags Flags to customize the contouring algorithm
|
||||
|
||||
\return Calculated contour lines
|
||||
|
||||
An adaption of CONREC, a simple contouring algorithm.
|
||||
http://local.wasp.uwa.edu.au/~pbourke/papers/conrec/
|
||||
*/
|
||||
QwtRasterData::ContourLines QwtRasterData::contourLines(
|
||||
const QRectF &rect, const QSize &raster,
|
||||
const QList<double> &levels, ConrecFlags flags ) const
|
||||
{
|
||||
ContourLines contourLines;
|
||||
|
||||
if ( levels.size() == 0 || !rect.isValid() || !raster.isValid() )
|
||||
return contourLines;
|
||||
|
||||
const double dx = rect.width() / raster.width();
|
||||
const double dy = rect.height() / raster.height();
|
||||
|
||||
const bool ignoreOnPlane =
|
||||
flags & QwtRasterData::IgnoreAllVerticesOnLevel;
|
||||
|
||||
const QwtInterval range = interval( Qt::ZAxis );
|
||||
bool ignoreOutOfRange = false;
|
||||
if ( range.isValid() )
|
||||
ignoreOutOfRange = flags & IgnoreOutOfRange;
|
||||
|
||||
QwtRasterData *that = const_cast<QwtRasterData *>( this );
|
||||
that->initRaster( rect, raster );
|
||||
|
||||
for ( int y = 0; y < raster.height() - 1; y++ )
|
||||
{
|
||||
enum Position
|
||||
{
|
||||
Center,
|
||||
|
||||
TopLeft,
|
||||
TopRight,
|
||||
BottomRight,
|
||||
BottomLeft,
|
||||
|
||||
NumPositions
|
||||
};
|
||||
|
||||
QwtPoint3D xy[NumPositions];
|
||||
|
||||
for ( int x = 0; x < raster.width() - 1; x++ )
|
||||
{
|
||||
const QPointF pos( rect.x() + x * dx, rect.y() + y * dy );
|
||||
|
||||
if ( x == 0 )
|
||||
{
|
||||
xy[TopRight].setX( pos.x() );
|
||||
xy[TopRight].setY( pos.y() );
|
||||
xy[TopRight].setZ(
|
||||
value( xy[TopRight].x(), xy[TopRight].y() )
|
||||
);
|
||||
|
||||
xy[BottomRight].setX( pos.x() );
|
||||
xy[BottomRight].setY( pos.y() + dy );
|
||||
xy[BottomRight].setZ(
|
||||
value( xy[BottomRight].x(), xy[BottomRight].y() )
|
||||
);
|
||||
}
|
||||
|
||||
xy[TopLeft] = xy[TopRight];
|
||||
xy[BottomLeft] = xy[BottomRight];
|
||||
|
||||
xy[TopRight].setX( pos.x() + dx );
|
||||
xy[TopRight].setY( pos.y() );
|
||||
xy[BottomRight].setX( pos.x() + dx );
|
||||
xy[BottomRight].setY( pos.y() + dy );
|
||||
|
||||
xy[TopRight].setZ(
|
||||
value( xy[TopRight].x(), xy[TopRight].y() )
|
||||
);
|
||||
xy[BottomRight].setZ(
|
||||
value( xy[BottomRight].x(), xy[BottomRight].y() )
|
||||
);
|
||||
|
||||
double zMin = xy[TopLeft].z();
|
||||
double zMax = zMin;
|
||||
double zSum = zMin;
|
||||
|
||||
for ( int i = TopRight; i <= BottomLeft; i++ )
|
||||
{
|
||||
const double z = xy[i].z();
|
||||
|
||||
zSum += z;
|
||||
if ( z < zMin )
|
||||
zMin = z;
|
||||
if ( z > zMax )
|
||||
zMax = z;
|
||||
}
|
||||
|
||||
if ( qIsNaN( zSum ) )
|
||||
{
|
||||
// one of the points is NaN
|
||||
continue;
|
||||
}
|
||||
|
||||
if ( ignoreOutOfRange )
|
||||
{
|
||||
if ( !range.contains( zMin ) || !range.contains( zMax ) )
|
||||
continue;
|
||||
}
|
||||
|
||||
if ( zMax < levels[0] ||
|
||||
zMin > levels[levels.size() - 1] )
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
xy[Center].setX( pos.x() + 0.5 * dx );
|
||||
xy[Center].setY( pos.y() + 0.5 * dy );
|
||||
xy[Center].setZ( 0.25 * zSum );
|
||||
|
||||
const int numLevels = levels.size();
|
||||
for ( int l = 0; l < numLevels; l++ )
|
||||
{
|
||||
const double level = levels[l];
|
||||
if ( level < zMin || level > zMax )
|
||||
continue;
|
||||
QPolygonF &lines = contourLines[level];
|
||||
const ContourPlane plane( level );
|
||||
|
||||
QPointF line[2];
|
||||
QwtPoint3D vertex[3];
|
||||
|
||||
for ( int m = TopLeft; m < NumPositions; m++ )
|
||||
{
|
||||
vertex[0] = xy[m];
|
||||
vertex[1] = xy[0];
|
||||
vertex[2] = xy[m != BottomLeft ? m + 1 : TopLeft];
|
||||
|
||||
const bool intersects =
|
||||
plane.intersect( vertex, line, ignoreOnPlane );
|
||||
if ( intersects )
|
||||
{
|
||||
lines += line[0];
|
||||
lines += line[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
that->discardRaster();
|
||||
|
||||
return contourLines;
|
||||
}
|
||||
Reference in New Issue
Block a user